Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Chemosphere ; 353: 141532, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38403119

ABSTRACT

Zeolite is a versatile and effective reactive material used in permeable reactive barriers (PRBs) for remediating groundwater contaminated with heavy metals. In this study, we evaluated the influence of subsurface environmental conditions, namely contamination level (C0) and groundwater velocity (v), on predicting the longevity of zeolite for cadmium (Cd) removal. Batch experiments were performed to investigate the effect of C0 on Cd removal, and column experiments were performed to examine how Cd transportation through zeolite varies at different C0 and v. Breakthrough curves (BTCs) were analyzed with an advection-dispersion equation (ADE) coupled with nonequilibrium sorption rate models. The reaction parameters indicating the performance metrics of zeolite were determined using an iterative fitting approach-retardation factor (R), partitioning coefficient (ß), and mass transfer coefficient (ω). R exhibited dependence on C0, but was unrelated to v; its rapid increase at lower C0 was explained by Langmuir sorption isotherms. ß and ω, integral to sorption dynamics and mass transfer, respectively, showcased functional relationships with v. ß decreased gradually as v increased, described by the nonequilibrium sorption model, whereas ω increased steadily with v, guided by the Monod function. Using the relationship of these parameters, the fate and transport of Cd within zeolite was simulated under various subsurface environmental conditions to construct the longevity prediction function. Thus, this study introduces a method for predicting the longevity of reactive materials, which can be valuable for designing PRBs with high longevity in the future.


Subject(s)
Groundwater , Water Pollutants, Chemical , Zeolites , Cadmium , Water Pollutants, Chemical/analysis , Adsorption
2.
Environ Sci Pollut Res Int ; 30(7): 18260-18267, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36207634

ABSTRACT

Sweat discharged as a result of exposure to sauna plays an important role in removing inorganic ions accumulated in the body, including heavy metals. In this study, inorganic ions (toxic and nutrient elements) excreted in the form of sweat from the body using a water-filtered infrared-A (wIRA) sauna were determined using inductively coupled plasma sector field mass spectrometry. The analyzed elements included eight toxic elements (Al, As, Be, Cd, Ni, Pb, Ti, and Hg) and 10 nutrient elements (Ca, Co, Cr, Cu, Fe, Mg, Mn, Se, V, and Zn), and their correlations were determined. Analysis of the sweat obtained from 22 people using the wIRA sauna showed a higher inorganic ion concentration than that obtained from conventional activities, such as exercise or the use of wet sauna, and the concentration of toxic elements in sweat was higher in females than in males. Correlation analysis of the ions revealed a correlation between the discharge of toxic elements, such as As, Be, Cd, and Ni, and discharge of Se and V, and Ni was only correlated with Mn. This study provides fundamental information on nutritional element supplementation when using wIRA sauna for detoxification.


Subject(s)
Metals, Heavy , Steam Bath , Trace Elements , Male , Female , Humans , Cadmium/analysis , Sweat/chemistry , Water/analysis , Human Body , Metals, Heavy/analysis , Trace Elements/analysis , Environmental Monitoring/methods
3.
Article in English | MEDLINE | ID: mdl-28920769

ABSTRACT

The aim of this study was to investigate Cr(VI) removal from chromium-plating rinse water using modacrylic anion-exchange fibers (KaracaronTM KC31). Batch experiments were performed with synthetic Cr(VI) solutions to characterize the KC31 fibers in Cr(VI) removal. Cr(VI) removal by the fibers was affected by solution pH; the Cr(VI) removal capacity was the highest at pH 2 and decreased gradually with a pH increase from 2 to 12. In regeneration and reuse experiments, the Cr(VI) removal capacity remained above 37.0 mg g-1 over five adsorption-desorption cycles, demonstrating that the fibers could be successfully regenerated with NaCl solution and reused. The maximum Cr(VI) removal capacity was determined to be 250.3 mg g-1 from the Langmuir model. In Fourier-transform infrared spectra, a Cr = O peak newly appeared at 897 cm-1 after Cr(VI) removal, whereas a Cr-O peak was detected at 772 cm-1 due to the association of Cr(VI) ions with ion-exchange sites. X-ray photoelectron spectroscopy analyses demonstrated that Cr(VI) was partially reduced to Cr(III) after the ion exchange on the surfaces of the fibers. Batch experiments with chromium-plating rinse water (Cr(VI) concentration = 1178.8 mg L-1) showed that the fibers had a Cr(VI) removal capacity of 28.1-186.4 mg g-1 under the given conditions (fiber dose = 1-10 g L-1). Column experiments (column length = 10 cm, inner diameter = 2.5 cm) were conducted to examine Cr(VI) removal from chromium-plating rinse water by the fibers under flow-through column conditions. The Cr(VI) removal capacities for the fibers at flow rates of 0.5 and 1.0 mL min-1 were 214.8 and 171.5 mg g-1, respectively. This study demonstrates that KC31 fibers are effective in the removal of Cr(VI) ions from chromium-plating rinse water.


Subject(s)
Acrylic Resins/chemistry , Anion Exchange Resins/chemistry , Chromium/analysis , Polyvinyl Chloride/chemistry , Wastewater/chemistry , Water Pollutants, Chemical/analysis , Water Purification/methods , Adsorption , Chromium/chemistry , Hydrogen-Ion Concentration , Water Pollutants, Chemical/chemistry
4.
AMB Express ; 7(1): 38, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28197984

ABSTRACT

In this study, we quantified the attachment and detachment of bacteria during transport in order to elucidate the contributions of reversible attachment on bacterial breakthrough curves. The first set of breakthrough experiment was performed for a laboratory sand column using leaching solutions of deionized water and mineral salt medium (MSM) of 200 mM with reference to KCl solution by employing Pseudomonas putida as a model bacterium. In the second set of experiment, the ionic strengths of leaching solutions immediately after bacterial pulse were lowered to tenfold and 100-fold diluted system (2 and 20 mM MSM) to focus on the influence of physicochemical factor. Results have shown that bacterial retention occurred in the sand column due to the physical deposition and physicochemical attachment. The physicochemical attachment was attributed to the high ionic strength (200 mM MSM) of leaching solution and the formation of primary energy minimum. Replacing the 200 mM leaching solution with the lower ionic strengths after pulse resulted in the increased tailing of breakthrough curve due to the detachment from the attached bacteria. The detachment could be well explained by DLVO theory, which showed the formation of energy barrier and disappearance of the secondary minimum as the ionic strength gradually decreased. Analysis of mass recovery revealed that 12-20% of the attachment was due to physical and physicochemical attachment, respectively, where the latter consisted of 25-75% of irreversible and reversible attachment respectively.

5.
Environ Technol ; 34(5-8): 703-10, 2013.
Article in English | MEDLINE | ID: mdl-23837321

ABSTRACT

The aim of this study was to investigate the adhesion of bacteria (Escherichia coli) to pyrophyllite clay using batch and flow-through column experiments. Batch results demonstrated that pyrophyllite was effective in removing bacteria (94.5 +/- 2.0%) from aqueous solution (1 mM NaCl solution; pyrophyllite dose of 1 g/ml). At solution pH 7.1, negatively-charged bacteria could be removed due to their adhesion to positively-charged surfaces of pyrophyllite (point of zero charge = 9.2). Column results showed that pyrophyllite (per cent removal of 94.1 +/- 2.3%) was far more effective in bacterial adhesion than quartz sand (53.6 +/- 5.3%) under the given experimental conditions (flow rate of 0.3 ml/min; solution of 1 mM NaCl + 0.1 mM NaHCO3). Bacterial removal in pyrophyllite columns increased from 90 to 100% with decreasing flow rate from 0.6 to 0.15 ml/min due to increasing contact time between bacteria and filter materials. In addition, bacterial removal remained relatively constant at 94-97% even though NaHCO3 concentration increased from 0.1 to 10 mM (flow rate of 0.3 ml/min). This could be related to the fact that pyrophyllite remained positively-charged even though the solution conditions changed. This study demonstrates that pyrophyllite could be used as adsorptive filter materials in the removal of bacteria.


Subject(s)
Aluminum Silicates/chemistry , Bacterial Adhesion/physiology , Escherichia coli/isolation & purification , Escherichia coli/physiology , Ultrafiltration/methods , Water Microbiology , Water/chemistry , Adsorption , Clay , Water Purification/methods
6.
Environ Technol ; 34(17-20): 2757-64, 2013.
Article in English | MEDLINE | ID: mdl-24527639

ABSTRACT

In this study, the deposition and transport of Pseudomonas aeruginosa on sandy porous materials have been investigated under static and dynamic flow conditions. For the static experiments, both equilibrium and kinetic batch tests were performed at a 1:3 and 3:1 soil:solution ratio. The batch data were analysed to quantify the deposition parameters under static conditions. Column tests were performed for dynamic flow experiments with KCl solution and bacteria suspended in (1) deionized water, (2) mineral salt medium (MSM) and (3) surfactant + MSM. The equilibrium distribution coefficient (K(d)) was larger at a 1:3 (2.43 mL g(-1)) than that at a 3:1 (0.28 mL g(-1)) soil:solution ratio. Kinetic batch experiments showed that the reversible deposition rate coefficient (k(att)) and the release rate coefficient (k(det)) at a soil:solution ratio of 3:1 were larger than those at a 1:3 ratio. Column experiments showed that an increase in ionic strength resulted in a decrease in peak concentration of bacteria, mass recovery and tailing of the bacterial breakthrough curve (BTC) and that the presence of surfactant enhanced the movement of bacteria through quartz sand, giving increased mass recovery and tailing. Deposition parameters under dynamic condition were determined by fitting BTCs to four different transport models, (1) kinetic reversible, (2) two-site, (3) kinetic irreversible and (4) kinetic reversible and irreversible models. Among these models, Model 4 was more suitable than the others since it includes the irreversible sorption term directly related to the mass loss of bacteria observed in the column experiment. Applicability of the parameters obtained from the batch experiments to simulate the column breakthrough data is evaluated.


Subject(s)
Pseudomonas aeruginosa/cytology , Soil Microbiology , Bacterial Adhesion , Kinetics , Models, Biological , Porosity , Potassium Chloride/chemistry , Silicon Dioxide/chemistry , Surface-Active Agents/chemistry , Water/chemistry
7.
J Environ Sci (China) ; 24(4): 589-95, 2012.
Article in English | MEDLINE | ID: mdl-22894091

ABSTRACT

The removal of As(III) and As(V) from aqueous solution was investigated using waste cast iron, which is a byproduct of the iron casting process in foundries. Two types of waste cast iron were used in the experiment: grind precipitate dust (GPD) and cast iron shot (CIS). The X-ray diffraction analysis indicated the presence of Feo on GPD and CIS. Batch experiments were performed under different concentrations of As(III) and As(V) and at various initial pH levels. Results showed that waste cast iron was effective in the removal of arsenic. The adsorption isotherm study indicated that the Langmuir isotherm was better than the Freundlich isotherm at describing the experimental result. In the adsorption of both As(IH) and As(V), the adsorption capacity of GPD was greater than CIS, mainly due to the fact that GPD had higher surface area and weight percent of Fe than CIS. Results also indicated the removal of As(III) and As(V) by GPD and CIS was influenced by the initial solution pH, generally decreasing with increasing pH from 3.0 to 10.5. In addition, both GPD and CIS were more effective at the removal of As(III) than As(V) under given experimental conditions. This study demonstrates that waste cast iron has potential as a reactive material to treat wastewater and groundwater containing arsenic.


Subject(s)
Arsenates/isolation & purification , Arsenites/isolation & purification , Iron/chemistry , Waste Products/analysis , Water Pollutants, Chemical/isolation & purification , Adsorption , Chemical Precipitation , Electron Probe Microanalysis , Hydrogen-Ion Concentration , Kinetics , Solutions , Temperature , X-Ray Diffraction
8.
Colloids Surf B Biointerfaces ; 63(2): 236-42, 2008 Jun 01.
Article in English | MEDLINE | ID: mdl-18226508

ABSTRACT

This study investigated the transport of bacteria through goethite-coated sand, focusing on the effects of solution pH and coated sand content on the transport of Escherichia coli ATCC 11105. The first set of column experiments was performed in columns (length 30 cm, diameter 5 cm) packed with quartz sand coated with goethite in solution having a pH in the range of 6-9. The second was carried out in columns (length 30 cm, diameter 2.5 cm) with varying coated sand contents ranging from 0 to 100%. Results indicate that the bacteria transport in the coated sand was influenced by solution pH. Around pH 6 and 7, bacterial mass recoveries were low at 2.4-6.7% while they were high at 76.3-81.6% around pH 8 and 9. Around pH 8, the positively charged coated sand may convert to being negatively charged, causing an electrostatically repulsive interaction between the coated sand and bacteria, thus effecting a sharp change in the mass recovery. Results also reveal that the mass recovery decreased from 76.7 to 2.7% as the coated sand content increased from 0 to 100%, showing the nonlinear dependency of mass recovery on the content of coated sand. This study demonstrates the importance of the solution pH and coated sand content in the adhesion of bacteria to goethite-coated sand and furthermore contributes to the knowledge of bacterial removal in positively charged porous media.


Subject(s)
Bacterial Physiological Phenomena , Hydrogen-Ion Concentration , Iron Compounds/chemistry , Silicon Dioxide , Microscopy, Electron, Scanning , Minerals , Spectrum Analysis/methods
9.
J Biosci Bioeng ; 104(2): 129-34, 2007 Aug.
Article in English | MEDLINE | ID: mdl-17884658

ABSTRACT

In this study, we attempted to treat groundwater contaminated with nitrate using a two-stage removal system: one is biological treatment using the nitrate-degrading bacteria Pseudomonas sp. RS-7 and the other is chemical treatment using a coagulant. For the biological system, the effect of carbon sources on nitrate removal was first investigated using mineral salt medium (MSM) containing 500 mg l(-1) nitrate to select the most effective carbon source. Among three carbon sources, namely, glucose, starch and cellulose, starch at 1% was found to be the most effective. Thus, starch was used as a representative carbon source for the remaining part of the biological treatment where nitrate removal was carried out for MSM solution and groundwater samples containing 500 mg l(-1) and 460 mg l(-1) nitrate, respectively. About 86% and 89% of nitrate were removed from the MSM solution and groundwater samples, respectively at 72 h. Chemical coagulants such as alum, lime and poly aluminium chloride were tested for the removal of nitrate remaining in the samples. Among the coagulants, lime at 150 mg l(-1) exhibited the highest nitrate removal efficiency with complete disappearance for the MSM solutions. Thus, a combined system of biological and chemical treatments was found to be more effective for the complete removal of nitrate from groundwater.


Subject(s)
Coagulants/chemistry , Nitrates/isolation & purification , Nitrates/pharmacokinetics , Pseudomonas/metabolism , Water Pollutants/isolation & purification , Water Pollutants/pharmacokinetics , Water Purification/methods , Biodegradation, Environmental , Nitrates/chemistry , Water Pollutants/chemistry
10.
J Colloid Interface Sci ; 314(2): 367-72, 2007 Oct 15.
Article in English | MEDLINE | ID: mdl-17602698

ABSTRACT

We propose a novel kinetic model for adsorption of aqueous benzene onto both granular activated carbon (GAC) and powdered activated carbon (PAC). The model is based on mass conservation of benzene coupled with three-stage adsorption: (1) the first portion for an instantaneous stage or external surface adsorption, (2) the second portion for a gradual stage with rate-limiting intraparticle diffusion, and (3) the third portion for a constant stage in which the aqueous phase no longer interacts with activated carbon. An analytical solution of the kinetic model was validated with the kinetic data obtained from aqueous benzene adsorption onto GAC and PAC in batch experiments with two different solution concentrations (C(0)=300 mg L(-1), 600 mg L(-1)). Experimental results revealed that benzene adsorption for the two concentrations followed three distinct stages for PAC but two stages for GAC. The analytical solution could successfully describe the kinetic adsorption of aqueous benzene in the batch reaction system, showing a fast instantaneous adsorption followed by a slow rate-limiting adsorption and a final long constant adsorption. Use of the two-stage model gave incorrect values of adsorption coefficients in the analytical solution due to inability to describe the third stage.


Subject(s)
Benzene/chemistry , Carbon/chemistry , Adsorption , Chemistry, Physical/methods , Colloids/chemistry , Diffusion , Kinetics , Models, Chemical , Surface Properties
11.
Res Microbiol ; 158(1): 70-8, 2007.
Article in English | MEDLINE | ID: mdl-17125973

ABSTRACT

Transport of bacteria in aquifer systems plays an important role in bioaugmentation, which relies upon successful bacterial delivery to a target area. In the present study, we conducted a set of laboratory column experiments under various conditions of pore-water velocity (upsilon(omega)) and ionic strength (IS) of culture medium for Pseudomonas aeruginosa, known to be a benzene-degrading bacteria, in order to investigate their relationship to mass recovery in saturated quartz sands. The column experiments revealed that both peak concentrations and mass recoveries of bacteria were lower than those of a conservative tracer KCl when deionized water was used as leaching water for all ranges of pore-water velocity (0.18-6.23 cm/min). Thus, the parameter responsible for transport of P. aeruginosa was only the deposition coefficient. Bacterial cells could not be attached to the mineral surfaces by predominance of electrostatic charge or repulsive forces over hydrophobicity or attractive forces due to the very low ionic strength ( approximately 0 mM) of deionized water. The loss of bacterial mass was attributed to the deposition in the crevice formed on the quartz surfaces, as evidenced by SEM images. For a given pore-water velocity, the ionic strength markedly influenced bacterial deposition, showing decreased peak concentrations and mass recoveries with increasing ionic strength of column leaching water. An optimum range of upsilon(omega) and IS for achieving bacterial mass recovery higher than 70% in the studied quartz sand was found such that: (i) at low IS ( approximately 0 mM), a pore-water velocity higher than 0.30 cm/min, and (ii) at pore-water velocity of 0.52 cm/min, an IS lower than 290 mM, were required, respectively.


Subject(s)
Pseudomonas aeruginosa/growth & development , Bacterial Adhesion/physiology , Benzene/metabolism , Colony Count, Microbial , Culture Media , Ions , Pseudomonas aeruginosa/metabolism , Quartz , Water Movements
SELECTION OF CITATIONS
SEARCH DETAIL
...